1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
############################################################### # Matthew L. Jockers # mjockers@unl.edu # Text Analysis and Topic Modeling in the Humanities Workshop # University of Wisconsin-Milwaukee # April 19, 2013 ############################################################### ############################################################### # SESSION ONE (9:00-10:15) ############################################################### ############################################# # 1.1 The R computing environment--what is R ############################################# ############################################# # 1.2 R console vs. RStudio show both quickly ############################################# ############################################# # 1.3 Vectors and basic math in R ############################################# # Explain the assignment operator "<-" myvar<-1 myvar length(myvar) # Notice that myvar is displayed with a [1]. R uses vectors to store most everything. a vector is simply a list of items. in this case myvar is a vector of one item # now we create a new vector with 4 itmes using the "c" function myvar<-c(1,2,4,6) # the "c" function means "combine" myvar length(myvar) class(myvar) # show numeric class #vectors can contain different types of data. myvar<-c('a', 'b', 'c') class(myvar) # show character class # But Vectors cannot hold values with different data types in the same vector myvar<-c("a", "b", 1, 2, 3) myvar # Notice that R has converted the numbers to characters. # R has lots of handy shortcuts myvar<-5:25 myvar # Accessing items in a vector can get confusing. think about each item as having a numerical index from 1 to n # in the sequence we just created, the first item in the vector list is the number 5. We can access items in a vector by putting their index number inside square brackets, like this myvar[1] # and if we want to see the first three items myvar[1:3] # ? huh ? Yes, this can be a bit confusing, especially when we use numbers as items in the vector. # consider this instead myvar<-c("This", "is", "a", "test", ".") myvar[1:3] myvar[3:5] # Cool. Now back to numbers for a minute. With items in vectors, we can do vector math. . . myvar<-c(1,2,4,6) myvar+10 #notice that R "recycles" the 10 over each value in the vector. this is very handy and very important. # it can get even more fun when you have two vectors, like this myvar1<-c(1,2,4,6) myvar2<-c(10, 20,40,60) # you can add them "index" wise across vectors. myvar1+myvar2 # you can also use R as a calculator. . . 1+1 2-3 3*3 8675309/3 # that's enough for now . . . let's play with some text ############################################# # 1.4 Text manipulation in R ############################################# # Load Plain text of Moby Dick from Project Gutenberg using the scan function text<-scan("http://www.gutenberg.org/cache/epub/2701/pg2701.txt", what="character", sep="\n") class(text) # text is a character vector # what is that \n thingy? length(text) #[1] 18874 text[1:3] #explain line based chunking when using \n # Explore how the text is ingested as lines. text[1:407] #Introductory material and boilerplate text[408] #start of first chapter text[18577] #beginning of the final boilerplate class(text) str(text) # Demonstrate the use of the which function as a way to find items in vector start<-which(text == "CHAPTER 1. Loomings.") start end<-which(text == "End of Project Gutenberg's Moby Dick; or The Whale, by Herman Melville") end start<-408 end<-18577 # instead of this: novel.lines<- text[408:(18577-1)] # we can use the start and end variables # Now we can easily isolate the main text of the novel novel.lines<- text[start:(end-1)] # why the -1 length(novel.lines) novel.lines[1] # so now we've got 18169 lines. # we want a single string of text # so we can use paste to glue all of the lines together novel<-paste(novel.lines, collapse=" ") length(novel) # huh? What happened here. . . . # now we want to begin doing some analysis, let's convert all to lowercase novel.lower <-tolower(novel) class(novel.lower) novel.lower # check it out y'all moby.words<-strsplit(novel.lower, "\\W") # huh? wassup with that \\W, man? class(moby.words) # a list, what the heck is a list? length(moby.words) # well, it is a list of one, and the one happens to be a vector # we can access the item(s) in a list using double brackets # Here I'll show the entire vector of words that is in item 1 moby.words[[1]] # and we can see how many items are in the vector in the first list item, like this length(moby.words[[1]]) # Well, in this case the list seems extraneous. In fact it is. # We only have a list here because that is the way that strsplit outputs # its results. So let's get rid of it. moby.word.vector<-unlist(moby.words) length(moby.word.vector) # hey, that's the same as this: length(moby.words[[1]]) # if you look at the vector of words you'll see some odd "blanks" moby.word.vector[1:20] # ? huh. . . when we use \\W, punctuation gets stripped and these remindered of where the punc chars were get left as a residue. # we can figure out the POSITIONS of these blanks using which which(moby.word.vector=="") # and we can figure out which are not blanks by using the not equals operator != not.blanks<-which(moby.word.vector!="") # so, not.blanks is now a vector of the "positions" of items in the moby.word.vector that are not blanks. # so we can overwrite the existing moby.word.vector with a pared down version that omits the blanks, like this moby.word.vector<- moby.word.vector[not.blanks] # once we have all the words in a vector, we can do some cool searching: whales<-which(moby.word.vector=="whale") whale.hits<-length(whales) whale.hits/length(moby.word.vector) # relative frequency of whales # compare to "the" the<-which(moby.word.vector=="the") the.hits<-length(the) the.hits/length(moby.word.vector) # we can make the percentages easier to read 100*(the.hits/length(moby.word.vector)) 100*(whale.hits/length(moby.word.vector)) # we can figure out how many unique words there are in the novel length(unique(moby.word.vector)) # that's big! # we can even create an entire frequency list for all the words moby.freqs<-table(moby.word.vector) sorted.moby.freqs<-sort(moby.freqs , decreasing=TRUE) sorted.moby.freqs[1:10] sorted.moby.rel.freqs<-100*(sorted.moby.freqs/sum(sorted.moby.freqs)) sorted.moby.rel.freqs[1:10] plot(sorted.moby.rel.freqs[1:10], type="b", xlab="Top Ten Words In Moby Dick by Rel Freq", ylab="Percentage of Full Text", xaxt="n") axis(1, 1:10, labels=names(sorted.moby.rel.freqs[1:10])) ############################################################### # BREAK TIME: (10:15-10:30) ############################################################### ############################################################### # SESSION TWO (10:30-12:00) ############################################# # 2.1 Downloading and exploring the exercise corpus ############################################# # http://www.matthewjockers.net/wp-content/uploads/2013/04/uwm-workshop.zip # setwd or Session->Set Working Dir->Choose Dir setwd("~/Documents/Workshops/Wisconsin/uwm-workshop") # Load a directory of files for analysis corpusDir<-"data/corpus" files<-dir(path=corpusDir, pattern=".*txt") files #explain what we are seeing here # Load and examine the metadata file metadata<-read.csv("data/metadata.csv", stringsAsFactors=F) dim(metadata) class(metadata) head(metadata) # what is a data.frame? # show how a dataframe is accessed metadata[1:2, 1:4] # show short cut for column names metadata$author metadata[,4] #show colnames function colnames(metadata) # Summary: So we have a vector of file names that we sucked out of a directory and we have a data.frame that we loaded from a .csv file (e.g. an excel file) that contains metadata about the files in the directory. We now want to create a topic model of all the files in that directory and we then want to be able to say something interesting about the topics in this corpus. ############################################# # 2.2 What is Latent Dirichlet Allocation (LDA) anyhow? ############################################# # LDA buffet story. ############################################# # 2.3 Text Chunking ############################################# # load a text from the directory--Dorian Gray novel.lines<-scan(file.path(corpusDir, files[33]), what="character", sep="\n") novel<-paste(novel.lines, collapse=" ") novel.lower <-tolower(novel) wilde.words<-strsplit(novel.lower, "\\W") # tokenize wilde.words.vector<-unlist(wilde.words) not.blanks<- which(wilde.words.vector!="") # remove blanks wilde.words.vector<- wilde.words.vector[not.blanks] length(wilde.words.vector) # [1] 80294 # We want to chunk this into n 1000 word chunks. chunk.size<-1000 # set a chunk variable num.chunks<-length(wilde.words.vector)/chunk.size num.chunks x <- seq_along(wilde.words.vector) # create a list where each item is a chunk vector chunks <- split(wilde.words.vector, ceiling(x/chunk.size)) # What have we done here? ceiling is a rounding function. ? ceiling #see class(chunks) #inspect the first 1500 values ceiling(x/chunk.size)[1:1500] # what about split ? split #examine the result str(chunks) # so now we need to convert this list of vectors into a list of contiguous text chunks # so consider that this first chunk chunks[[1]] # contains a vector of words from the first 1000 words chunk. But instead of a vector, we need a string of continues words, like this: paste(chunks[[1]], collapse=" ") ############################################# # 2.4 lapply ############################################# # we can apply this paste function over and over again using lapply, a special function for iterating over list items. # let's learn lapply. # lapply is a function that takes a list as an argument (i.e. our chunks list) # and then returns a new list having applied a function to each item in the list chunks.as.strings<-lapply(chunks, paste, collapse=" ") # here we use lappy to apply the "paste" function to each item in the list and we provide the additional collapse argument and an optional argument to the function # so now this chunks.as.strings[[1]] # is the same as this: paste(chunks[[1]], collapse=" ") # but we also have chunks.as.strings[[2]] # and so on. # so now we have a list of text chunks as strings of text. # we want to send these to a topic model but before we can do that we have to get them out of the list format chunk.vector<-unlist(chunks.as.strings) length(chunk.vector) ############################################# # 2.5 A Toy Model ############################################# # Now we will run a topic model just for fun # Let's see if we can find 5 topics in Dorian Gray # I'll explain all of this later, so just play along for now. library(lda) doclines<-lexicalize(chunk.vector) set.seed(8675309) K <- 5 num.iterations<-250 result <- lda.collapsed.gibbs.sampler(doclines$documents, K, doclines$vocab, num.iterations, 0.1, 0.1, compute.log.likelihood=TRUE) top.words <- top.topic.words(result$topics, 25, by.score=TRUE) # let's see what we've got top.words # tada, it's garbage! The problem is that we have lot's of high frequency words that # are screwing up the topical-ness of our topic model. # so we need to get rid of these danged stop words. ############################################# # 2.6 What is a stoplist ############################################# # Here is a typical stop list english.stoplist<-read.csv("/Users/mjockers/Documents/Workshops/Wisconsin/data/english.stop.txt", stringsAsFactors=F) english.stoplist<-unique(english.stoplist[,1]) # our goal is to scan each chunk and remove words that are in the stoplist. # remember chunks? str(chunks) # it is a list containing a series of word vectors. # we need to go back to the point just before we glued all of those words in each vector together with the following command # chunks.as.strings<-lapply(chunks, paste, collapse=" ") # before gluing in all together, we need to remove the stopwords from each chunk # we can use lapply again here too, but we need a custom function to apply ############################################# # 2.7 A Function ############################################# # Explain this function mywhich<-function(word.vector, stoplist){ word.vector[-which(word.vector %in% stoplist)] } # Now apply the function over each item in the chunks list chunks.without.stops<-lapply(chunks, mywhich, english.stoplist) #now we need to collapse the chunks just like in the past chunks.as.strings<-lapply(chunks.without.stops, paste, collapse=" ") # and convert to a text cector from a list chunk.vector<-unlist(chunks.as.strings) length(chunk.vector) ############################################# # 2.8 A Toy Model again ############################################# # Now run the LDA again, over the new list # Let's see if we can find 5 topics in Dorian Gray # I'll explain all of this later, so just play along for now. library(lda) doclines<-lexicalize(chunk.vector) set.seed(8675309) K <- 5 num.iterations<-250 result <- lda.collapsed.gibbs.sampler(doclines$documents, K, doclines$vocab, num.iterations, 0.1, 0.1, compute.log.likelihood=TRUE) top.words <- top.topic.words(result$topics, 25, by.score=TRUE) # let's see what we've got top.words # So, these topics are better, but still not the best we could hope for due # to the presence of a lots of character names. ########################################################################### # LUNCH BREAK (12:00-1:30) ########################################################################### ########################################################################### # SESSION 3 (1:30-2:45) ############################################# # 3.1 A better stoplist ############################################# # lets load a much larger stoplist that has character names long.stoplist<-read.csv("data/stoplist.csv", stringsAsFactors=F) long.stoplist<-unique(long.stoplist[,1]) length(long.stoplist) ############################################# # 3.2 A slightly better model ############################################# chunks.without.stops<-lapply(chunks, mywhich, long.stoplist) #now we need to collapse the chunks just like in the past chunks.as.strings<-lapply(chunks.without.stops, paste, collapse=" ") # and convert to a text cector from a list chunk.vector<-unlist(chunks.as.strings) library(lda) doclines<-lexicalize(chunk.vector) set.seed(8675309) K <- 10 num.iterations<-250 result <- lda.collapsed.gibbs.sampler(doclines$documents, K, doclines$vocab, num.iterations, 0.1, 0.1, compute.log.likelihood=TRUE) top.words <- top.topic.words(result$topics, 25, by.score=TRUE) # let's see what we've got top.words # Well, this is getting better and maybe at the level of a single novel # we might even want to keep the character names in. But once we move # from a single text to a corpus, we really don't want character based topics. # visit # http://www.matthewjockers.net/2013/04/12/secret-recipe-for-topic-modeling-themes/ # to show how topics w just english stopwords have lots of character names. # explain why this is a problem ############################################# # 3.3 POS tagging ############################################# novel.lines<-scan(file.path(corpusDir, files[33]), what="character", sep="\n") text.blob<-paste(novel.lines, collapse=" ") library(openNLP) tagged_text <- tagPOS(text.blob) # takes 2 minutes # need a new function tagged.words<-unlist(strsplit(tagged_text," ")) # Now chunk the full list chunk.size<-1000 # set a chunk variable num.chunks<-length(tagged.words)/chunk.size x <- seq_along(tagged.words) # create a list where each item is a chunk vector chunks <- split(tagged.words, ceiling(x/chunk.size)) ############################################# # 3.4 new functions ############################################# # New Function SelectTaggedWords <- function(Words,tagID) { Words[ grep(tagID,Words) ] } tagged.words.select.list<-lapply(chunks, SelectTaggedWords, "/NN$") # New Function RemoveTags <- function(Words) { sub("/[A-Z]{2,3}","",Words) } words.select.list<-lapply(tagged.words.select.list, RemoveTags) # New Function RemoveNonChar <- function(Words) { gsub("[^[:alnum:][:space:]']","",Words) } text.word.vector <- lapply(words.select.list, RemoveNonChar) chunks.without.stops<-lapply(text.word.vector, mywhich, english.stoplist) ############################################# # 3.5 re-modeling ############################################# #now we need to collapse the chunks just like in the past chunks.as.strings<-lapply(chunks.without.stops, paste, collapse=" ") # and convert to a text cector from a list chunk.vector<-unlist(chunks.as.strings) library(lda) doclines<-lexicalize(chunk.vector) set.seed(8675309) K <- 20 num.iterations<-250 result <- lda.collapsed.gibbs.sampler(doclines$documents, K, doclines$vocab, num.iterations, 0.1, 0.1, compute.log.likelihood=TRUE) top.words <- top.topic.words(result$topics, 5, by.score=TRUE) # let's see what we've got top.words # [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] # [1,] "pleasure" "lamp" "gold" "hansom" "murder" "experience" "companion" "bag" # [2,] "worship" "women" "silver" "horse" "crime" "art" "grass" "train" # [3,] "one" "street" "silk" "driver" "laboratory" "impulse" "wind" "coat" # [4,] "coffee" "curtain" "ceiling" "lace" "action" "instinct" "daisy" "servant" # [5,] "spirit" "ice" "damask" "cell" "method" "nothing" "happiness" "uncle" # [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] # [1,] "art" "blood" "love" "life" "sir" "music" "accident" "mother" # [2,] "artist" "cap" "theatre" "man" "picture" "principle" "sort" "son" # [3,] "painter" "poison" "night" "thing" "screen" "advantage" "town" "gentleman" # [4,] "picture" "race" "act" "time" "key" "carpet" "fellow" "marriage" # [5,] "fellow" "collar" "voice" "room" "tea" "host" "omen" "child" # [,17] [,18] [,19] [,20] # [1,] "book" "picture" "world" "husband" # [2,] "type" "canvas" "consolation" "tragedy" # [3,] "paper" "portrait" "yesterday" "dear" # [4,] "music" "prayer" "globe" "woman" # [5,] "background" "mouth" "caprice" "lady" ############################################################### # BREAK (2:45-3:00) ############################################################### ############################################################### # SESSION 4 (3:00-4:30) ############################################################### # now let's switch to a pre POS tagged corpus and make thematic clouds # This Requires POS tagging all of the texts. Sicne this takes several hours # i did it in advance. Here is the code required to do it on your own # library(openNLP) # for(i in 13:length(files)){ # text<-scan(file.path(corpusDir, files[i]), what="character", sep="\n") # text.blob<-paste(text, collapse=" ") # tagged_text <- tagPOS(text.blob) # write(tagged_text, paste("data/taggedCorpus/",files[i], sep="")) # } ############################################################### ############################################# # 4.1 ingesting the entire corpus ############################################# inputDir<-"data/taggedCorpus" files<-dir(path=inputDir, pattern=".*txt") chunk.size<-1000 #number of words per chunk long.stoplist<-read.csv("data/stoplist.csv", stringsAsFactors=F) long.stoplist<-unique(long.stoplist[,1]) # Let's take all of the functions we wrote above and move them into a # new file called pos.functions.r # once they are in this other file, we can call them up using the "source" function. source("code/pos.functions.r") topic.df<-NULL for(i in 1:length(files)){ tagged_text<-scan(file.path(inputDir, files[i]), what="character", sep="\n") tagged_words <- unlist(strsplit(tagged_text," ")) tagged_words <- c(SelectTaggedWords(tagged_words,"/NN$")) # SELECT POS TAG TYPES TO KEEP tagged_words_less <- RemoveTags(tagged_words) word.vector <- RemoveNonChar(tagged_words_less) #remove the blanks text.word.vector<- word.vector[which(word.vector!="")] #remove stopwords text.word.vector<-text.word.vector[-which(text.word.vector %in% long.stoplist)] num.chunks<-length(text.word.vector)/chunk.size max<-length(text.word.vector)/num.chunks x <- seq_along(text.word.vector) chunks <- split(text.word.vector, ceiling(x/max)) # Here I introduce a way to deal with small chunks at the end if(length(chunks[[length(chunks)]]) <= 500){ chunks[[length(chunks)-1]]<-c(chunks[[length(chunks)-1]], chunks[[length(chunks)]]) chunks[[length(chunks)]]<-NULL } chunks<-lapply(chunks, paste, collapse=" ") chunks.df<-do.call(rbind, chunks) chunks.df<-cbind(files[i],chunks.df) topic.df<-rbind(topic.df, chunks.df) } ############################################# # 4.2 Modeling the entire corpus ############################################# library(lda) doclines<-lexicalize(topic.df[,2]) set.seed(8675309) K <- 50 num.iterations<-250 result <- lda.collapsed.gibbs.sampler(doclines$documents, K, doclines$vocab, num.iterations, 0.1, 0.1, compute.log.likelihood=TRUE) top.words <- top.topic.words(result$topics, 10, by.score=TRUE) # View top words top.words ############################################# # 4.3 Visualizing topics as clouds ############################################# library(wordcloud) result.dir<-"topicCloudsFromTagged/" for(i in 1:nrow(result$topics)){ cloud.data<-sort(result$topics[i,], decreasing=T)[1:50] png(paste(result.dir, i,".png", sep=""), width = 12, height = 12, units="in", res=300) print(wordcloud(names(cloud.data), freq=cloud.data, scale=c(4,.10), min.freq=1, rot.per=0, random.order=F)) dev.off() } ############################################# # 4.4 Topic data analysis ############################################# # after looking at the clouds, we decide we are interested in # topic 25 which has to do with depictions of slavery # First let's get the proportional data from the model topic.proportions <- t(result$document_sums) / colSums(result$document_sums) # topic.proportions is a matrix with 932 rows: one for each 1000 word text segment # and 50 columns, one for each topic. To make life easier, let's create a column header row colnames(topic.proportions)<-paste("Topic",1:50, sep="_") # But there is no info in the matrix about which file chunk is which. # but we have that data in the first column of topic.df and we can get it out like this thefilenames<-topic.df[, 1] # so now we need to assign each chunk a unique number chunk.ids<-ave(final.df[,3], final.df$thefilenames, FUN = seq_along) # we can then "bind" all of this "column" data # to the the topic.proportions matrix, like this final.df<-cbind.data.frame(thefilenames, chunk.ids, topic.proportions) # show the result like this. . . . final.df[1:25, 1:5] # now the file names can act like "keys" in a relational database and allow us to lookup the metadata about those files in the metadata table we loaded earlier. for example, metadata<-read.csv("data/metadata.for.tagged.csv", stringsAsFactors=F) # but first we need to fix the file extensions since we switched to the .txt files metadata$filename<-gsub(".xml", ".txt", metadata$filename) # and now we can figure out which files are which using "which" metadata[which(metadata$filename == "1008.txt"), ] # so let's say we are interested in the slavery topic, topic 25. # We can identify the book with the largest use of the theme like this max.slavery<-final.df[which(final.df$Topic_25 == max(final.df$Topic_25)), "thefilenames"] # so, which book is it? metadata[which(metadata$filename == max.slavery),] # now let's plot the presence of slavery across the entire novel plot(final.df[which(final.df$thefilenames == max.slavery), "Topic_25"], type="l") # and finally, let's calculate and plot the mean usage of the theme across all the novels in the corpus. ############################################# # 4.5 Basic Plotting ############################################# mean.slavery<-aggregate(final.df$Topic_25, by=list(thefilenames), mean) #plot it barplot(mean.slavery$x,names.arg=mean.slavery$Group.1, las=2) # now export the image. this makes us wonder about text 500.txt metadata[which(metadata$filename == "500.txt"),] # X filename date author title # 41 41 500.txt 1867 Child, Lydia Maria Francis A Romance of the Republic. (1867) # nation # 41 American |